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Abstract
We develop, test and apply a volume of fluid (VOF) type code for the direct numerical
simulation of two-fluid configurations of magnetic fluids with dynamic interfaces. Equilibrium
magnetization and linear magnetic material are assumed and uniform imposed magnetic fields
are considered, although extensions to nonlinear materials and to fields with spatio-temporal
variability are possible. Models are computed for configurations of bubbles of non-magnetic
fluid rising in ferrofluid and droplets of ferrofluid falling through non-magnetic fluid. Bubbles
and droplets exhibit similar changes of shape in the presence of vertical fields, due to a
combination of elongation along the field lines and the fluid dynamics of ordinary rising or
falling at small Bond number. Bubbles become more prolate than droplets under the same
parameters and are accordingly found to break up more readily than droplets in stronger fields.
Indirect effects are observed, such as the change in rise time and the consequent changes in the
flow due to increased Reynolds number.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many configurations of magnetic fluids include an interface
separating the fluid from a second medium, such as air
or another liquid. As in the non-magnetic case, there is
both practical and academic interest in those interfacial flows
involving layers, sheets, jets, droplets and bubbles. Aside
from the jump in density and viscosity generally found at fluid
interfaces, in a magnetic fluid (ferrofluid) there will usually
be a jump in magnetic properties. A notable case in point is
the normal field instability [5] that has become a hallmark of
the discipline of ferrohydrodynamics. Bubbles and droplets
are ubiquitous in industrial and natural flows and often have a
significant impact on the physical properties of the flow.

In this work we focus on configurations involving either
a single bubble of non-magnetic material in a ferrofluid or
a single droplet of ferrofluid immersed in a non-magnetic
fluid. A bubble with lower density than its surroundings will
rise under gravity with possibly complicated trajectory and
change of shape as dictated by the viscosity ratio, Bond number
and Morton number (defined below). A droplet of higher
density will fall through its surroundings, but along a straight

trajectory. In both cases, an imposed magnetic field, even if
steady and uniform, can modify both shape and trajectory. If
the densities of the fluids are matched (or if gravity is absent) a
uniform magnetic field leads to an equilibrium shape in which
the droplet or bubble elongates along the field lines. In this
work, our interest is in dynamic behavior as opposed to static
equilibria. For another extreme, we examine the conditions
under which breakup of a bubble or droplet will occur.

The study of the equilibrium shape of a neutrally
buoyant ferrofluid droplet in a uniform field has a
long history [19, 18, 1] and includes the mathematical
analog of a dielectric droplet in a uniform electric
field [19, 18, 14, 20, 6, 8]. It was realized early [6, 8] that
the influence of the magnetic field stemmed from the Maxwell
stress and could be reduced to a normal stress acting at the
interface. This stress depends on the normal and tangential
components of the magnetic field at the interface and can be
shown to be largest at the two poles (where the axis is the field
direction) of the bubble or droplet. To maintain a normal stress
balance, the curvature increases at the poles and decreases at
the equator, leading to a prolate shape. That a prolate shape
results no matter which fluid has the higher permeability was
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first explained in [6, 8] for dielectric fluids and explained and
experimentally validated for ferrofluids by [1].

In this work we use direct numerical simulations to study
static and dynamic ferrofluid bubbles and droplets. The
numerical modeling of incompressible fluids with interfaces is
a broad problem with many approaches (see [17] for a review).
One of the more successful and robust approaches, interface
capturing, treats the multi-component fluid as a single fluid
with abrupt changes in density and viscosity, using an auxiliary
function to capture the interface. The two most common
interface capturing methods are the level set method, in which
the interface is the zero contour of a smooth function, and the
volume of fluid or VOF method, in which a color (or phase)
function describes which fluid occupies each computational
cell. Level set methods naturally allow precise computation
of the interface’s geometric properties, such as its normal
and curvature, yet tend to conserve volume (mass) poorly.
VOF methods, on the other hand, naturally conserve volume
accurately, but lead to inaccurate curvature estimates. The
inaccurate curvatures of VOF methods are one source of so-
called spurious current errors [17]. For this work we have
developed a VOF method as an extension of the SURFER

code [7] in which magnetic interfacial stresses and solution of
the magnetostatic Maxwell equations have been incorporated.
Other workers have approached ferrofluid interface modeling
using different methods [11].

2. Governing equations

Here we consider only configurations involving one non-
magnetic fluid and one magnetic fluid, of permeability μ

and susceptibility χ = μ/μ0 − 1. We further assume
a linear magnetic material (μ,χ constant) and equilibrium
magnetization, M = M0 = χH such that M × H = 0.
Maintaining consistency with the VOF approach, we treat this
multi-component fluid as a single fluid with spatially varying
density, viscosity and magnetic permeability.

Neglecting striction this leads to a modified Navier–Stokes
governing equation

ρ

(
∂u
∂ t

+ u · ∇u
)

= −∇ p + ρg + η∇2u − 1

2
H ·H∇μ, (1)

where g is gravity and we assume isothermal and incompress-
ible media,

∇ · u = 0. (2)

In the form (1) the pressure, p, represents the hydrodynamic
pressure only. The magnetic forces are captured in the
rightmost term, which will vanish in the bulk of the fluid
where μ is constant, but act on the interface where μ jumps
in value [15, 12].

The (magnetostatic) Maxwell’s equations, ∇ ×H = 0 and
∇ · B = 0, where B = μ0(H + M), are more conveniently
posed in terms of a magnetic potential φ,

∇ · ([1 + χ]∇φ) = 0 (3)

where H = ∇φ. Equation (3) is also solved in a single domain
in which χ varies sharply at the interface. In this way, the

conditions that normal B and tangential H remain continuous
are naturally captured by the solution.

The coupling of the magnetic field reduces to a singular
normal force acting on the interface, just as for the force of
interfacial tension. We are then able to describe a two-fluid
system with a dynamic interface using the single equation

ρ

(
∂u
∂ t

+ u ·∇u
)

= −∇ p+ρg+η∇2u+σκ δSn+FMδS (4)

where δS is a distribution identifying the interface and n is the
interface normal; also, σ is the interfacial tension coefficient,
κ is the interface curvature and FM is the magnetic interfacial
force. Magnetic interfacial force is defined in terms of the jump
in magnetic normal stress at the interface

FM =
[
n ·

(
μHH − μ

2
H 2

I

)]
(5)

where the square brackets represent the difference taken across
the interface. The solution of equation (3) can be used
to evaluate the field in the neighborhood of the interface.
Alternatively, one can use the continuity of normal B and
tangential H to find more convenient expressions for the
magnetic interfacial force.

The equilibrium magnetic field internal to an ellipsoidally
shaped interface is uniform and has a well known exact
solution [9]. It can be shown [14] that any axisymmetrically
shaped bubble or droplet has a uniform internal field.

Rosensweig has found an expression in terms of the
magnetization, namely FM = −μ0

2 (χH · H + χ2 H 2
n )

where Hn is the component of magnetic field normal to the
interface [15]. The above expression is convenient but does not
easily reveal the competing effect of the normal and tangential
field components. Garton and Krasucki [6] have derived an
expression for the interfacial force acting in perfect dielectric
fluids [6]. Following that work, we can find an analogous
expression for magnetic fluids, FM = 1

2 (μi−μo)[H 2
t + μi

μo
H 2

n ]i,
where the subscripts i and o refer to inner and outer and t
indicates the tangential component. This expression clearly
shows that the difference μi − μo determines the sign of the
magnetic interfacial force, while the ratio μi/μo determines
the relative importance of the normal field component. Notice
that even though the above interfacial force is of opposite
sign in bubbles and droplets, it increases poleward in both
cases, making time independent solutions for both bubbles and
droplets have a prolate shape. In the next section we describe
the numerical technique used to solve equations (2), (4) and (3)
numerically.

3. Computational method

The above equations are solved numerically by extending the
SURFER code to include the magnetic interfacial force (the
rightmost term of equation (4)), and a multigrid relaxation
algorithm to solve (3). Details of each of these extensions
follow.
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3.1. Interface normal

In SURFER the interface is captured using a color function C
with values in [0, 1] which is used to track the identity of fluid
inside each computational box (node). Note that C is simply
advected, namely: it satisfies

∂C

∂ t
+ u ·∇C = 0, (6)

and that Ci j = 0 in fluid 1, Ci j = 1 in fluid 2 and 0 < Ci j < 1
represents the fraction of a grid box that is occupied by fluid 2,
which is found only in boxes through which the interface cuts.

A discrete interface normal can be computed using n =
∇C/|∇C|; a version of the Parker–Youngs normal [16] defines
the components of n as follows:

nx
i, j = 1

h
(Ci+1, j+1 + 2Ci+1, j + Ci+1, j−1

− Ci−1, j+1 − 2Ci−1, j − Ci−1, j−1),

ny
i, j = 1

h
(Ci+1, j+1 + 2Ci, j+1 + Ci−1, j+1

− Ci+1, j−1 − 2Ci, j−1 − Ci−1, j−1) .

Since the computation of curvature is not required for magnetic
forces, curvature algorithms are not discussed here but can be
found in [17]. Other methods have also been used [10].

3.2. Magnetostatic Maxwell equation

In terms of the color function C , the material properties in the
single-fluid approach are defined as follows: ρ = ρ1C + (1 −
C)ρ2, η = η1C + (1 − C)η2 and χ = χ1C + (1 − C)χ2.

The solution of the equation (3) is made difficult by
the fact that the coefficient, 1 + χ , experiences a jump at
the interface. To alleviate this we apply a standard V-cycle
multigrid algorithm on several levels of increasingly coarse
grids, using the previous time solution for φ as an initial
guess on the finest grid. At each level we use a simple red–
black Gauss–Seidel iteration; on the coarsest grid, up to fifty
iterations are required but the size of the problem is small. The
multigrid method converges once the residual (error) becomes
smaller than a fixed tolerance; otherwise an additional V-cycle
is performed.

4. Direct numerical simulations

Here we show first a numerical resolution study at low
field strength followed by results for the cases of a bubble
of non-magnetic fluid rising buoyantly through a ferrofluid
and a falling droplet of ferrofluid. For both bubbles and
droplets a uniform vertical magnetic field is imposed and
the simulations are two-dimensional. Extension to three-
dimensional simulations is straightforward but requires a
requisite increase in computing resources. Rising bubbles (and
falling droplets) can be characterized in terms of their Bond
(or Eötvös) and Morton numbers [4]. The Morton number,
Mo is a material quantity (for water at room temperature,
Mo = 3 × 10−11) and is very small in our simulations. The
Bond number is defined as Bo := g
ρd2/σ , where d is the

Figure 1. Rising bubble in a ferrofluid at numerical resolutions
(left to right): 32 × 64, 64 × 128, 128 × 256, 256 × 512; here
ρ1 = 2, ρ2 = 1, μ1 = 0.02, μ2 = 0.01, σ = 0.003 and H = 1.

bubble size; Bo measures the relative importance of buoyancy
and interfacial tension. Bubbles having Bo < 1 remain
approximately spherical as they rise. In our simulations we
keep the Bond number near unity. Because of the magnetic
interfacial force, we may also define a magnetic Bond number,
BoM := μ0χ H 2d/σ , although this does not take into account
the variation of the normal component of H as a function of
position along the interface. In our simulations we vary BoM at
fixed Bo by varying H or χ , as given below.

Numerical convergence. We have found that adequate
numerical accuracy is reached at moderate numerical
resolution of approximately 1282 computational nodes. In
figure 1 we show a rising bubble at t = 1; the numerical
resolution increases from left to right. Apart from the distinct
sharpening of the interfacial region at higher resolution, it
is apparent that the results in the final two cases are nearly
identical. In the rightmost frame of figure 1 there are just over
100 cells across the bubble width (the entire computational
domain is 256 × 512).

Rising bubbles. For these tests we adopt the following
parameter values: σ = 0.04 N m−1, ρ1 = 1000 kg m−3,
ρ2 = 10 kg m−3, μ1 = 0.01 Pa s, μ2 = 0.001 Pa s and
Rb = 1.5 mm for the initial radius of the bubble. The field
is uniform and oriented vertically (parallel to gravity). In this
work we have attempted to choose realistic physical parameters
for a ferrofluid and accompanying non-magnetic fluid (liquid
or gas). However, numerical constraints have also guided some
parameter choices, such as densities, because large ratios in
density dramatically increase computation times.

As a result of the normal force acting on the interface in
equation (4), the bubble will elongate along the direction of the
field. This elongation is counteracted by: (i) interfacial tension,
which tends to a state of uniform curvature; (ii) buoyancy
forces; (iii) pressure variations and viscous stresses that vary
along the bubble interface due to the rising motion. We see a
preliminary result in figure 2, showing that the elongation leads
to a drag reduction which in turn leads to faster rising bubbles
(the times shown in the top and bottom frames in figure 2
are identical). This effect can be examined in more detail by
increasing the field and taking snapshots of the rising at a fixed
time t1 > 0, as shown in figure 3. Other workers have seen
similar behavior [21, 22].
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Figure 2. A bubble rising in ferrofluid, with (bottom row) and without (top row) a uniform vertical magnetic field.

Figure 3. Effect of increasing field: BoM = 0, 1, 2, 3, 4 (left to right) all shown at t = 1.

Figure 4. Effect of increasing susceptibility: χ = 1, 2, 3, 4, 5 (left to right).

Alternatively, we can increase the susceptibility χ , seeing
nearly identical effects, shown in figure 4, but for a larger range
of magnetic forcing, exceeding the threshold where the bubble
is driven to breakup.

Falling droplets. Because of their similar behavior, we
present in this section a basic comparison between bubble and
droplet behavior for the same conditions. For these tests we

adopt the following parameter values: σ = 0.01 N m−1, ρ1 =
2 kg m−3, ρ2 = 1 kg m−3, μ1 = 0.05 Pa s, μ2 = 0.01 Pa s,

χ = 3, and Rb = 1.5 mm for the initial radius of the droplet

and bubble. In figure 5 two asymmetries are apparent, between

the bubble and droplet: first, the droplet has fallen more than

the bubble has risen; and second, the bubble has become more
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Figure 5. Falling droplet (left) versus rising bubble (right) in a
uniform vertical field, under identical physical conditions.

elongated, as is most apparent in its more extended and thinner
tail. The asymmetry is rise/fall time is due to ordinary added
mass effects but the greater elongation of bubbles is due to the
different magnetic interfacial stress, as discussed earlier. A
slightly conical end is observable on the droplet; such shapes
have been observed experimentally [2, 3].

5. Discussion and conclusions

We have developed and tested a VOF type code to simulate the
dynamics of two-fluid flows of magnetic fluids with dynamic
interfaces for uniform imposed magnetic fields. The code was
applied to examine the shape change and rising and falling
dynamics of bubbles and droplets of magnetic fluid in non-
magnetic fluid for a range of physical parameters, always at
small Bond number.

Collaborations are under way to image rising gas bubbles
in ferrofluid using a high speed high resolution x-ray camera
at the Advanced Photon Source, Argonne National Laboratory
USA; initial tests have verified feasibility [23].

Other simulations (not shown here) of droplets and
bubbles in zero gravity show that for higher field strengths,
the droplet stretches out to form a ‘popsicle stick’ shape.
Considering the close analogy between ferrofluid droplets and
dielectric droplets [13], it is interesting that no experimental

evidence for any tip-streaming like behavior in ferrodroplets
has yet been recorded. Numerical simulations offer another
avenue for exploring this possibility.

At present, we are conducting more extensive validation
studies of the code based on the normal field instability [5]
and are extending the model to axisymmetric and full three-
dimensional versions.

Acknowledgment

We would like to thank Ron Rosensweig for enlightening
discussions and comments.

References

[1] Arkhipenko V I, Barkov Yu D and Bashtovoi V G 1978
Magnetohydrodynamics 14 373

[2] Bacri J-C and Salin D 1982 J. Phys. Lett. 43 L649
[3] Bacri J-C and Salin D 1983 J. Phys. Lett. 44 L415
[4] Clift R, Grace J R and Weber M E 1978 Bubbles, Drops and

Particles (New York: Dover)
[5] Cowley M D and Rosensweig R E 1967 J. Fluid Mech. 30 671
[6] Garton C G and Krasucki Z 1964 Proc. R. Soc. A 280 211
[7] Lafaurie B, Nardonne C, Scardovelli R, Zaleski S and

Zanetti G 1994 J. Comput. Phys. 113 134
[8] Kao K C 1961 Br. J. Appl. Phys. 12 629
[9] Landau L D and Lifshitz E M 1960 Electrodynamics of

Continuous Media (Oxford: Pergamon)
[10] Mai J, Früh W G and Yamane R 2002 J. Magn. Magn. Mater.

252 169
[11] Matthies G and Tobiska L 2005 J. Magn. Magn. Mater.

289 346
[12] Melcher J R 1981 Continuum Electromechanics

(Cambridge, MA: MIT Press)
[13] Melcher J R and Taylor G I 1969 Annu. Rev. Fluid Mech. 1 111
[14] Miksis M J 1981 Phys. Fluids 24 1967
[15] Rosensweig R E 1985 Ferrohydrodynamics (New York: Dover)
[16] Rudman M 1997 Int. J. Numer. Methods Fluids 24 671
[17] Scardovelli R and Zaleski S 1999 Annu. Rev. Fluid Mech.

31 567–603
[18] Sherwood J D 1988 J. Fluid Mech. 188 133
[19] Stone H A, Lister J R and Brenner M P 1999 Proc. R. Soc. A

455 329
[20] Taylor G I 1966 Proc. R. Soc. A 291 159
[21] Ueno K, Higashitani M and Kamiyama S 1995 J. Magn. Magn.

Mater. 149 104
[22] Ueno K, Nishita T and Kamiyama S 1999 J. Magn. Magn.

Mater. 201 281
[23] Lee W-K 2007 private communication, Argonne

5

http://dx.doi.org/10.1051/jphyslet:019820043017064900
http://dx.doi.org/10.1051/jphyslet:019830044011041500
http://dx.doi.org/10.1017/S0022112067001697
http://dx.doi.org/10.1098/rspa.1964.0141
http://dx.doi.org/10.1006/jcph.1994.1123
http://dx.doi.org/10.1088/0508-3443/12/11/310
http://dx.doi.org/10.1016/S0304-8853(02)00660-1
http://dx.doi.org/10.1016/j.jmmm.2004.11.098
http://dx.doi.org/10.1146/annurev.fl.01.010169.000551
http://dx.doi.org/10.1063/1.863293
http://dx.doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
http://dx.doi.org/10.1146/annurev.fluid.31.1.567
http://dx.doi.org/10.1017/S0022112088000667
http://dx.doi.org/10.1098/rspa.1999.0316
http://dx.doi.org/10.1098/rspa.1966.0086
http://dx.doi.org/10.1016/0304-8853(95)00348-7
http://dx.doi.org/10.1016/S0304-8853(99)00026-8

	1. Introduction
	2. Governing equations
	3. Computational method
	3.1. Interface normal
	3.2. Magnetostatic Maxwell equation

	4. Direct numerical simulations
	5. Discussion and conclusions
	Acknowledgment
	References

